2018

MATHEMATICS

(Major)

Paper: 6.5

(Graph and Combinatories)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions: 1×7=7
 - (a) Write the multiplicative rule principle of combinatories.
 - (b) In how many ways can five examinations be scheduled in a week so that no two examinations are scheduled on the same day, considering Sunday as a holiday?
 - (c) In how many ways can a committee of 5 persons be formed from 6 men and 4 women so as to include 3 men and 2 women?
 - (d) Draw a simple graph having four vertices each of degree 2.
 - (e) Draw complete graph K4.
 - (f) What is the length of a path?
 - (g) How many edges of a tree are having n vertices?

- 2. Answer the following questions: 2×4=8
 - (a) A bag contains six white marbles and five red marbles. Find the number of ways that four marbles can be drawn from the bag if they must be the same colour.
 - (b) How many vertices are there in a graph with 15 edges, if each vertex is of degree 3?
 - (c) Show that there is only one path between every pair of vertices in a tree.
 - (d) Find the radius and diameter of the tree shown below and show that diameter in a tree is not necessarily double of its radius:

- 3. Answer the following questions:
 - (a) Give combination proof of the following identities: 2+3=5

(i)
$$C(n, r) = C(n, n-r)$$

(ii)
$$C(n+1, r) = C(n, r) + C(n, r-1)$$

(b) There exists no simple graph corresponding the following degree sequences:

Justify the above statement.

5

Or

Prove that for any graph G with six vertices, G or \overline{G} contains a triangle.

- (c) Let v be a point of a connected graph G. Then prove that the following statements are equivalent:
 - (i) v is a cut point of G.
 - (ii) There exist points u and w distinct from v such that v is in every u-w path.
 - (iii) There exists a partition of the set of points $V \{v\}$ into subsets U and W such that for any point $u \in U$ and $w \in W$, the point v is on every u w path.

Or

Let G be a connected graph with at least three points. If G is a block, then prove that every two points of G lie on a common cycle.

- 4. Answer any one part :
 - (a) For any graph G, prove that

 $K(G) \le \lambda(G) \le \delta(G)$

The symbols have their usual meaning. Also show that the maximum vertex connectivity of a graph G with n vertices and e edges (e > n - 1) is the integral part of the number, $\frac{2e}{n}$.

(Turn Over)

5

	(b) State and prove Menger's theorem on graph.	10					
5							
3.	5. Answer any one part: (a) Prove that a connected graph is Eulerian if and only if every vertex of the has even degree.						
	(b) (i) If G is a simple graph with n vertices (n≥3) and if deg (v)+deg (w)≥n for every pair of non-adjacent vertices v and w, then prove that G is Hamiltonian.	7					
	(ii) Under what conditions on r and s does the complete bipartite graph K _{r, s} have a Hamiltonian circuit?	3					
6.	Answer any one part:						
	(a) (i) Find the number of integers between 1 and 250 that are divisible by any of the integers 2, 3, 7.	5					
	(ii) Find the number of integral solutions of the equation $x+y+z=18$ with the conditions that $x<7$, $y<8$ and $z<9$.	5					
	(b) (i) Find the number of non-negative solution of $x+y+z=18$ with the conditions that $x \ge 3$, $y \ge 2$, $z \ge 1$.	5					
	(ii) What is the probability that exactly one cell is empty if ten identical balls are distributed randomly into five distinct cells?	5					

8A-	-4500 /905 3 (Sem-6) MAT M	1 5					