List of Figures

Figure

Page

Fig. 1.	Location of the area	2
Fig. 1.2	Topographic representation with elevation ranges of the	
	study area. The topography has a north-easterly slope.	4
Fig. 1.3	Drainage map of the study area.	5
Fig. 4.1	Exposure of conglomerate near Mawryngkneng	31
Fig. 4.2	Current bedding in quartzites exposed on the bed of	
	the river at Ksehpongdeng	31
Fig. 4.3	Overturned cross-bedding in quartzites at Thangshalai	33
Fig. 4.4	Convolute lamination in quartzites at Ksehpongdeng road	33
Fig. 4.5a	Tangential current bedding in quartzite. Arrow indicates	
	direction of current flow.	40
Fig. 4.5b	Histogram of frequency percentage.	40
Fig. 4.5c	Rose diagram showing current beddings azimuth.	
	Arrow indicates direction of current flow.	41
Fig. 4.6a	Block diagram of conglomerate bed.	41
Fig. 4.6b	Histogram showing pebbles inclination with the conglomerate	
	bed	43
Fig. 4.6c	Rose diagram showing azimuthal distribution of long axes (X).	43
Fig. 4.6d	Palaeocurrent map of the study area	44
Fig. 4.7	Lithological layering S_0 in quartzites and dominant	
	foliation S ₁ in phyllites. Locality: Shormo	46
Fig. 4.8	Crinkle cleavage in phyllite at Pamlyer (Ksehpongdeng road).	
	Axes of the crenulation are the L_2 .	47
Fig. 4.9	Minor open fold in phyllite at Japshyndit hillock, Mawryngkneng.	47
Fig. 4.10	Block diagram showing the development of various sets of	
	joint in the Shillong Group and their relation to fold closures.	49
Fig. 4.11	Location map of the joint diagram.	52
Fig. 4.12	Strike histogram.	54
Fig. 4.13	Rose diagram.	55

Fig. 4.14	Diagram showing the dominant type of quartz vein in quartzite	56
Fig. 4.15a	Rose showing trend of quartz vein	56
Fig. 4.15b	Bar showing trend of quartz vein	56
Fig. 4.16	Open fold in quartzite	58
Fig. 4.17	Isoclinal F1 fold in phyllite	60
Fig. 4.18	F_1 fold refolded by open F_2 fold in phyllites of Shillong Group	
	at Puriang.	61
Fig 4.20a	Phyllite wsowing open fold at Japshyndit Hillock	62
Fig 4.20b	Projection diagram of open fold	62
Fig 4.19a	Chevron fold developed in phyllite of Shillong Group,	
	Locality-Puriang	64
Fig 4.19b	Kinking in phyllite, Locality-Puriang	64
Fig 4.21	Contoured stereogram of 100 poles to foliation (S_o) from	
	Domain-I	67
Fig 4.22	Contoured stereogram of 100 poles to foliation (S_o) from	
	Domain-II	67
Fig 4.23	Contoured stereogram of 100 poles to foliation (S_o) from	
	Domain-III	68
Fig 4.24	Contoured stereogram of 100 poles to foliation (S_o) from	
	Domain-IV	68
Fig-4.25	Contoured stereogram of 60 poles to foliation S_0 from	
	Domain V	69
Fig-4.26	Oriantation of pebbles.	7 2
Fig 4.27	Plots of ratio of principal elongation (Flinn, 1962) for	
	the pebbles of conglomerates	84
Fig 4.28	Polar graph (Hsu) of Lulung conglomerates	87
Fig 4.29	Polar graph (Hsu) of Mawryngkneng conglomerates	88

Fig 5.1a	Quartz grains showing sutured margin in quartzites	
	Locality- Puriang.	92
Fig 5.1b	Elongated grains of quartz arranged in linear order	
	and parallel to foliation (S1) in quartz schist.	93
Fig.5.1c	Well recrystallized quartz grains of quartzite of the	
	Shillong Group Locality- Ksehpongdeng.	96
Fig.5.2a	Development of phyllite structure with dominant	
	foliation (S1) in metapelite of the Shillong Group.	
	Locality- Pamlyer.	100
Fig.5.2b	Crenulation cleavage developed in the metapelites	
	of the Shillong Group, manifesting foliation (S ₂).	
	Locality- Ksehpongdeng road	100
Fig. 5.2c	Quartz vein through phyllite, parallel to schistosity (S1).	
	Locality- Shormo.	100
Fig.5.3	Plots of ACF values of metapelite on the triangular diagram	
	after Kyfe et al.1958.	106
Fig.5.4	Al ₂ O ₃ -CaO-(FeO+MgO) triangular diagram	
	(after Rao et al., 1974) for the analyzed metapelites	106
Fig.5.5	Plots of analyzed metapelites in Niggli c vursus (al-alk)	
	diagram (after Leake, 1964).	106
Fig.5.6	Plots of Niggli c against (al-alk) for the analyzed metapelites	
	(after Evans andLeake, 1960). The approximate field of	
	composition of Karroo Dolerites superimposed for comparison	107
Fig.5.7	100mg - c - (al-alk) triangular diagram	
	(after Leake, 1964) for the analyzed metapelites.	107
Fig.5.8	Plots of Niggli mg against c (after Leake, 1964)	
	for the analysed metapelites.	107
Fig.5.9a	Recrystallized quartz grains making up pebble are	
	set in an arenaceous quartz matrix. Locality- Lulung.	110
Fig.5.9b	Inclusion of muscovite needle into the fracture of	
	quartz grain of pebble in conglomerate. Locality- Lulung.	111
Fig.5.9c	Pebbles of conglomerate set in a micaceous matrix.	
	Locality- Mawryngkneng.	112

•

Fig.6.1	Magnetite in amphibolite retaining skeletal structure of pyroxene	
	Locality- Ksehpongdeng	123
Fig.6.2	Hornblende plate showing sieve structure in amphibolite.	
	Locality- Nongplit.	124
Fig.6.3	Plagioclase laths inside the hornblende showing	
	ophitic texture in amphibolite. Locality- Shormo.	125
Fig.6.4	A(Al ₂ O ₃ +Fe ₂ O ₃ -Na ₂ O-K ₂ O)- C(CaO-3.3P ₂ O ₅)- F(FeO+MgO+MnO)	
	plots of amphibolite (after Fyfe et al., 1958). Superimposed area	
	the field at basic rocks after Miyashiro(1973), M, and	
	Heier (1962), H.	129
Fig.6.5	Plots of MgO against CaO of the analyzed amphibolite.	
	The differentiation trend for continental thoeleiite (CT)	
	from Skaergaard (after Wager and Mitchell, 1951,	
	taken from Floyd, 1976) is given for comparison.	129
Fig.6.6	SiO ₂ versus (Na ₂ O+K ₂ O) diagram for the analyzed amphibolites.	
	Line AB divides the field of alkali basalts and tholeiitic basalts	
	(after McDonald and Kastura, 1964) over which Kuno's (1966)	
	field of high alumina basalt is suterimposed.	129
Fig.6.7	Al ₂ O ₃ -(FeO+SiO ₂)-MgO triangular diagram (after Jensen, 1976)	
	for the amphibolite. HFT-high iron tholeiitic ; HMT-high	
	magnesian tholeiitic ; CB-calc basalt ; TA- tholeiitic andesite;	
	CA- calc andesite; TD- tholeiitic dacite; CD- calc dacite;	
	TR- tholeiitic rhyolite; CR-calc rhyolite; BK- basalt komatiite;	
	PK- picrite komatiite.	130
Fig.6.8	Plots of Niggli mg against c (after Leake, 1964) for the analyzed	
	amphibolite. The area inside the continuous and dotted line	
	represent the field of igneous and pelitic rocks respectively	130
Fig.6.9	Niggli mg versus si plots of the analysed amphibolites	130 `
Fig.6.10	c - 100mg - (al-alk) triangular plots (after Leake, 1964)	
	of the analyzed amphibolites.	131
Fig.6.11	Plots of Niggli c against (al-alk) after Van de Kemp,	
	1968, of the analyzed amphibolites.	131
Fig.6.12	Plots of Niggli mg against alk, k and ti of the analyzed	
	amphibolites. 1- pelitic rocks; 2- ortho- amphibolite.	131

.

Fig.6.13	Plots of Niggli c against (al-alk) (after Leake, 1964)	
	for the analyzed amphibolites The broken line	
	indicating the composition of the Karroo dolerite	
	(after Evans and Leake, 1960) is given for comparison	132
Fig.6.14	MnOx10 – TiO ₂ – P_2O_5 +1 tectonic plots (after Mullen, 1983)	
	of the analyzed amphibolites. OIT- ocean island tholeiitic;	
	MORB- mid-oceanic ridge basalt; IAT- island arc tholeiitic;	
	CAB- calc alkaline basalt; OIA- ocean island andesite	132
Fig.6.15	K₂O- SiO₂ – P₂O₅ triangular plots (after Pearce et al., 1975)	
	for the analyzed amphibolites.	132
Fig.6.16	MgO- FeO – Al_2O_3 tectonic plots (after Pearce et al., 1977)	
	for the analyzed amphibolites. 1- spreading centre island;	
	2- orogenic ; 3- ocean ridge and floor; 4- ocean island;	
	5- continental.	133
Fig.6.17	Perthitic intergrowth of potash feldspar and plagioclase in granite	*
	Locality:- Ksehpongdeng.	137
Fig.6.18	Hypidiomorphic granular texture in granite.	
	Locality:- Ksehpongdeng.	140
Fig.6.19	Mymekitic intergrowth of quartz and plagioclase in granite.	
	Locality- Ksehpongdeng	140
Fig.6.20	ACF triangular diagram (after Chappell and White, 1992) for the	
	analyzed granite showing metaluminous chemistry.	144
Fig.6.21	Normative QAP diagram for the analyzed granite. The fields	
	are after Streckeisen (1976) 1a- quartzites ; 1b- quartz rich	
	granitoids; 2- alkali feldspar granite; 3- granite; 4- granodiorite;	
	5- tonalite; 6 [•] - quartz alkali feldspar syenite; 7- quartz syenite;	
	8 [•] - quartz monzonite; 9 [•] - quartz monzonite/ quartz monzo gabbro	;
	10 - quartz diorite/ quartz gabbro/ quartz anorthosite.	144
Fig.6.22	Plots of the analyzed granite on normative Ab- An- Or diagram	
	(after O'Connor, 1965)	144
Fig.6.23	Plots of analyzed granite in Na ₂ O – CaO – K ₂ O triangular diagram	ı
	(after Ali and Rao, 1980).	145
Fig.6.24	Normative Or – Ab – An triangular diagram (after Iden, 1981)	•
	for the analyzed granites.	145

-

.

-

Fig.6.25	Binary Na ₂ O versus K_2O diagram (after Harpum, 1963) for th	
	analyzed granite.	145
Fig.6.26	Plots of the SiO ₂ versus Na ₂ O + K_2O (after Irvine and Bavag	ar, 1971)
	of the analyzed granite.	146
Fig.6.27	Plots of granites in K_2O/Al_2O_3 versus Na_2O/Al_2O_3	
	(after Garrels and Mckenzie, 1971) diagram.	146
Fig.6.28	K ₂ O versus Na ₂ O diagram (after Chappell and White, 1992)	
	for the analyzed granite.	146
Fig.6.29	K ₂ O versus Na ₂ O plots (after Hine et al., 1978)	
	for the analyzed granites.	147
Fig.6.30	SiO ₂ versus FeO/FeO + MgO plots (after Maniar and Piccoli,	1984)
	of the analyzed granites.	147
Fig.6.31	Plots of SiO ₂ versus Al ₂ O ₃ (after Maniar and Piccoli, 1984)	
	of the analyzed granites	147